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ABSTRACT

Glioblastoma is an aggressive primary brain tumor. Recurrence is a major clinical problem. 
Several biological features favor recurrence of these tumors following surgery. Therapies to 
prolong survival are not completely effective. Non-coding genetic elements play a key role in 
the process of gliomagenesis. Non-coding RNAs are novel regulatory RNAs that play key roles in 
various processes as gene regulation, cell differentiation, and proliferation. Interestingly, some 
lncRNAs may act as tumor suppressors while others are oncogenic. In this review, we are going to 
illustrate the role of a well-known lncRNA HOX Transcript Antisense Intergenic RNA (HOTAIR) in 
glioma and highlight the possible functions in glioma. 
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Introduction
Glioblastoma Multiforme (GBM) is a primary 
brain tumor notorious for aggressive behavior 
[1]. The survival rate after one year is about 
39.7% with a high rate of recurrence [2]. The 
recurrence of GBM is a complex multifactorial 
process. The best outcome reported was related 
to the European Organization for Research and 
Treatment of Cancer (EORTC) and National 
Cancer Institute of Canada (NCIC) clinical 
trials [3]. Epigenetics are extensively involved 
in the virulence of GBM. Several factors 
contribute to treatment failure such as the 
heterogeneity of the GBM microenvironment, 
repository of stem cells with great regenerative 
activity, and developing resistance to common 
therapies.

Non-coding RNAs (ncRNAs) are recent 

classes of RNA molecules that play essential 
roles in different processes as gene regulation, 
cell differentiation and growth [4]. The non-
coding elements represent a large moiety of the 
human genome, however, its main functions 
are poorly understood [5,6]. The mechanism 
through which ncRNA regulates biological 
functions needs to be more elucidated. Non-
coding RNA is classified into short and long 
types according to the nucleotide length. 
Small ncRNAs (20-200 nucleotides) include 
microRNAs (miRNAs), small nuclear RNAs 
(snRNAs), small interfering RNAs (siRNAs), 
small nucleolar RNAs (snoRNAs), Piwi-
interacting RNAs (piRNAs) [7].

Long non-coding RNAs are composed of 
more than 200 nucleotides and could control 
genes that regulate the cell cycle, apoptosis, 
and cellular growth [8]. Mounting research 
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suggests a possible role of lncRNAs in different 
cancers including glioma [9]. For example, 
a lncRNA Nuclear Enriched Abundant 
Transcript 1 (NEAT1) enhances invasion 
of GBM cells and inhibits apoptosis [9]. 
Another lncRNA H19 was found to correlate 
with glioma grade and invasiveness [10]. The 
Tumor Suppressor Candidate 7 (TUSC7), is a 
LncRNA that inhibits invasion and migration 
of glioma cells and correlates with prognosis 
[10,11]. In this review article, we are going to 
highlight the potential roles of a well-known 
lncRNA HOX Transcript Antisense Intergenic 
RNA (HOTAIR) in glioma. 

Literature Review

	� Mechanism of action 
The lncRNA HOX Transcript Antisense 
Intergenic RNA (HOTAIR) was the first 
lncRNA to be identified [12]. It relates to the 
homeobox super-families and comprises 
2158 nucleotides. It is transcribed from the 
HOXC locus on chromosome 12q13.13 [13]. 
Polycomb-Repressive Complex 2 (PRC2) is a 
chromatin modifying complex and a binding 
target for HOTAIR [14]. PRC2 complex 
induces lysine methylation on histone H3. 
H3K27 methylation is considered a gene 
silencing way and is assisted by histone methyl 
transferase (Enhancer of Zeste Homolog 2 
(EZH2) [15]. Through interaction with histone 
lysine-specific demethylase (KDM1), HOTAIR 
can silence different genes [16]. 

KDM1 can combine with RE1-Silencing 
Transcription factor (REST) and cofactor 
Corepressor for Element-1-Silencing 
Transcription Factor (CoREST) to promote 
gene silencing. In early embryo life, HOTAIR 
is expressed in certain locations such as hind 
limb bud, and posterior trunk. HOTAIR also 
can regulate the cell cycle proteins through 
controlling Cyclin-Dependent Kinase 2 
(CDK2), CDK4, and Cyclin D1 [17]. Aberrant 
HOTAIR expression has been correlated 
with growth, and recurrence by affecting 
downstream targets [18-20].

	� Molecular interactions involving 
HOTAIR in GBM
HOTAIR exhibited oncogenic potential in 
breast and renal cancer by enhancing cell 
proliferation, suppressing apoptosis, and 
promoting invasion [21,22]. HOTAIR was 

expressed in glioma at a high rate compared 
to normal brain tissues [23]. A certain study 
showed that HOTAIR knockdown dismantled 
GBM mouse model [24]. HOTAIR is highly 
expressed in both classic and mesenchymal 
glioma subtypes compared to neural and 
proneural subtypes [25]. HOTAIR was 
identified as a marker that correlates for tumor 
grade and outcome given the fact that low-
grade glioma has lower expression levels of 
HOTAIR compared with high-grade tumors 
[25]. Studies evaluating the role of HOTAIR in 
GBM are summarized in Table 1.

Table 1: A sample of experimental studies 
investigating HOTAIR in glioblastoma.

Role of HOX Transcript 
Antisense Intergenic RNA 
(HOTAIR)

Reference

HOTAIR inhibits the transcription 
of Neuroleukin (NLK)  in U87, 
Glioblastoma Multiforme (GBM) 
cells, regulate Wnt/β-catenin 
pathway, inhibit cell cycle arrest 
and promote cell migration.

[70]

HOTAIR mRNA levels are 
increased in A172 glioma cells 
compared to normal astrocytes.

[71]

miR-141 directly binds to the 3 
UTR of HOTAIR in U251 and 
U87 glioma cells, inhibiting its 
expression.

[72]

miR-148b-3p downregulates the 
expression of tight junction-related 
proteins including ZO-1, clauidin-5, 
and occludin.

[69]

HOTAIR rs920778 and rs12826786 
frequencies do not differ between 
glioma patients and controls.

[73]

HOTAIR levels positively correlate 
with Matrix Metalloproteinase-7 
(MMP-7), Matrix 
Metalloproteinase-9 (MMP-9), and 
Vascular Endothelial Growth Factor 
(VEGF) levels in human glioma.

[74]

HOTAIR upregulates the expression 
of hexokinase 2 by downregulating 
miR-125.

[75]

HOTAIR is upregulated in 
temozolomide-resistant GBM cells. 
Serum exosome HOTAIR levels are 
higher in GBM patients’ resistant 
to temozolomide compared with 
responders. 

[68]
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(AURKB) that are involved in mitosis. Several 
genes such as ASPM, NCAPG, CDC6, CHEK1, 
CEP55 play a role in gliomagenesis, through 
their effect on cell cycle progression [36-39]. 

HOTAIR affected the expression of some cell-
cycle related genes such as CDC6, NCAPG, 
CENPE, and PLK4. As mentioned earlier, 
HOTAIR can induce gene silencing depending 
on EZH2 through histone methylation [40]. 
EZH2 inhibition was reported to stop cell cycle 
progress at the G0 or G1 phase of GBM cells 
favoring it as a therapeutic target.

	� Prominent interactions of 
HOTAIR with micro-RNA in GBM 
lncRNAs can control the activity of several 
mRNAs [41]. lncRNAs can compete with 
micro RNAs displacing them from binding 
sites [42]. In breast cancer, HOTAIR miR-
7 relation is a clear example and in gastric 
cancer, its pro oncogenic effect was through 
competing with miR-331-3p [42,43].

HOTAIR/miR-326: A study has shown that 
the expression of miR-326 is downregulated 
in glioma tissues. Knocking down HOTAIR 
resulted in the overexpression of miR-326 
which resulted in downregulating Fibroblast 
Growth Factor 1 (FGF1) in U87 cells impacting 
cellular proliferation (Figure 1).

HOTAIR/miR-15b: A study found that 
HOTAIR reduced miR-15b expression in 
glioma cells which may have oncogenic 
potential [44]. miR-15b could upregulate p53 
expression. HOTAIR, miR-15b, and p53 is a 
closed loop that controls glioma progression.

HOTAIR/miR-125a: miR-125a-5p was 
reported to inhibit glioblastoma cell 
proliferation, and HOTAIR has been 
demonstrated to reduce miR-125a expression 
[45,46]. Schisandrin B, an herbal extract, 
reduced HOTAIR expression in glioma cell 
lines by targeting the mammalian Target of 
Rapamycin (mTOR) expression [47].

HOTAIR/miR-219: miR-219-5p inhibits 
glial cell proliferation by targeting tyrosine 
kinase and Epidermal Growth Factor Receptor 
Mutation (EGFR) [48]. HOTAIR has been 
also shown to inhibit miR-219 in U87 cells, 
resulting in increased Cyclin D1 levels and 
cellular proliferation [49].

HOTAIR activity could be controlled by other 
ncRNAs. Homeobox Protein A9, (HOXA9) 
stimulates the expression of HOTAIR in 
glioma. 

The upregulation of HOXA9 was associated 
with abnormally aggressive behavior [26]. As 
mentioned before, HOTAIR can induce gene 
silencing depending on EZH2, meanwhile, 
HOXA9 is regulated by the Phosphatidylinositol 
3‑Kinase (PI3K) pathway and the inhibition of 
EZH2-mediated histone methylation [23, 27]. 

Another study evaluated the role of 
Programmed Cell Death Protein 4 (PDCD4) in 
the progression of GBM. The overexpression 
of PDCD4 in glioma cells down regulated 
cellular proliferation suggesting that PDCD4 
could function as a tumor suppressor. 

Lower expression levels of PDCD4 are 
associated with upregulated Histone H3 
methylation mediated by HOTAIR [28]. 
Exposure of glioma cells to a Bromodomain 
and Extra-Terminal (BET inhibitor) 
(I-BET151) downregulated the expression of 
HOTAIR and halted cell proliferation through 
cell cycle arrest. Moreover, the upregulation 
of HOTAIR abolished the anti-cancer effect of 
I-BET151. [29]. 

The role of HOTAIR as a tumor suppressor 
gene needs further scrutinization [30].

	� HOTAIR can influence cell-cycle 
related genes in GBM 
Long non-coding RNAs (lncRNAs) can 
regulate the cell cycle through several 
ways [31,32]. Antisense Noncoding RNA 
in the INK4 Locus (ANRIL), for example, 
downregulates p15INK4B expression, and 
Metastasis Associated Lung Adenocarcinoma 
Transcript (MALAT1) controls B-MYB that 
controls cell cycle progression [33,34]. 

In LN229 and U87 cells, the downregulating 
HOTAIR resulted in G0 or G1 stage block [35]. 
The downregulation of Cyclin D1, Cyclin E, 
Cyclin-Dependent Kinase 2 (CDK2), CDK4, 
and the enhanced expression of other proteins 
such as p21 and p16 was associated with 
HOTAIR downregulation. HOTAIR regulates 
a group of 18 genes that constitute a cell-cycle 
related mRNA network. HOTAIR controls cell 
cycle in glioma cells by regulating Forkhead 
Box Protein M1 (FoxM1) and Aurora Kinase B 
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essential especially for an aggressive disease 
like GBM. Differentiating true GBM recurrence 
from pseudo-progression seems difficult 
and technically challenging. Conventional 
Magnetic Resonance Imaging (MRI) could 
not easily pick the exact differences between 
both conditions. A serum biomarker could be a 
tool to aid in the clinical differentiation in both 
situations. 

Glial Fibrillary Acidic Protein (GFAP), lactate, 
miR-504, have been reported as potential 
candidates for diagnosing GBM [54-56]. The 
stability of lncRNAs secondary structures 
makes them perfect biomarkers [57]. HOTAIR 
has been identified as a possible serum marker 
in other cancers [58,59]. Its concentration 
was lower after the surgical treatment of a 
recurrent GBM and the reduction was more 
noticeable further weeks after surgery. Further 
experimental and clinical work should be 
implemented to evaluate the sensitivity and 
predictability of HOTAIR as a novel serum 
biomarker in patients diagnosed with GBM.

	� HOTAIR as a potential 
therapeutic target in GBM
As discussed earlier, HOTAIR can regulate 
glioma progression in an EZH2-dependent 

Discussion

	� HOTAIR and angiogenesis 
Angiogenesis is controlled by hypoxia 
mediators, the most well-known ones are 
Hypoxia Inducible Factor (HIF) and Vascular 
Endothelial Growth Factor (VEGF) [50,51]. 
Both HIF and VEGF work together to 
promote a vascular niche for glioma cells. In 
nasopharyngeal carcinoma cells, HOTAIR 
enhanced angiogenesis by activating the 
transcription promoter of Vascular Endothelial 
Growth Factor A (VEGFA) [52]. It may 
act through the formation of extracellular 
vesicles as it was detected in the supernatant 
of GBM culture [53]. Comprehensive studies 
are needed to evaluate the role of HOTAIR in 
terms of glioma vascularization.

	� Potential use of HOTAIR as a 
diagnostic marker in GBM
An absolute need for a non-invasive accurate 
marker for clinical implications in patients 
diagnosed with high-grade gliomas is 
demanding. The possibility for certain body 
fluid markers to be used for clinical prediction 
of glioma is still under investigation. Markers 
that can monitor response to therapy are 

Figure1: HOTAIR can interact with several other non-coding mRNAs and affect their activities 
which eventually affect cellular proliferation, apoptosis and cell cycle. MiR-326 inhibition 
resulted in decreased Fibroblast Growth Factor 1 (FGF1) that mediates the activity of the 
pathway Phosphatidylinositol 3‑Kinase (PI3K)/AKT/MEK which affects proliferation, migration 
and apoptosis. MiR-15 inhibition by HOTAIR will affect the level of p53 which is a tumor 
suppressor gene. Inhibition of miR-148b-3p by HOTAIR results in decreased expression of tight 
junction proteins which affects the tumor-brain barrier permeability.
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permeability by a mechanism involving the 
miR-148b-3p targeting. miR-148b-3p affects 
the microvascular endothelial cells which 
control the expression of proteins involved in 
Blood-Brain Barrier (BBB) integrity as Zonula 
Occludens (ZO-1), Claudin-5, and Occludin 
[71-75].

Conclusions
There is a compelling need for clinical studies 
that could uncover the HOTAIR role in GBM. 
Therapies to prolong survival in patients 
diagnosed with GBM are traditional and their 
effect on survival is not remarkable. More 
understanding of the biology of HOTAIR 
will enable researchers to develop new 
strategies and diagnostic markers that will 
eventually apply in clinical trials. Elevated 
expression of HOTAIR in glioma correlates 
with higher tumor grade and poor prognosis. 
Mechanistically, HOTAIR influences the 
expression of several cell cycle-related genes 
and interacts with various microRNAs, 
contributing to tumor growth, resistance to 
apoptosis, and increased invasion. Targeting 
HOTAIR-EZH2 interactions, utilizing RNA 
interference strategies, and employing BET 
inhibitors like I-BET151 have shown potential 
results in preclinical models.
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manner through epigenetic role. Therefore, 
targeting of HOTAIR-EZH2 interaction may 
be utilized as a possible therapeutic approach. 
AC1Q3QWB that targeted HOTAIR-EZH2, 
was found to inhibit glioma cell proliferation, 
with a resultant increase in CWF19L1 that 
works as a tumor suppressor gene [60,61]. 
The Bromodomain and Extra-Terminal (BET) 
proteins are epigenetic modulators that have 
been used as therapeutic tools for some cancers 
with profound epigenetic changes [62]. In 
a published study, I-BET151 treatment and 
BRD4 depletion reduced the overexpression of 
HOTAIR in glioma cells through an effect on 
transcription factors [63].

RNAi are tools that could inhibit specific 
genes, including short interfering RNAs 
(siRNAs) which are short double-stranded 
RNAs targeting complementary RNA 
molecules, resulting in gene suppression 
[64]. Carriers of nucleic acids could be used 
to deliver these siRNAs into tumor cells. Due 
to their high stability, iron oxide nanoparticles 
and specifically Super Paramagnetic Iron 
Oxide Nanoparticles (SPIONs) have been 
used widely in the delivery [65]. A study 
has demonstrated the successful delivery of 
siHOTAIR that subsequently inhibited glioma 
stem cell proliferation [66]. In a study by 
Zhang et al., deleting the HOTAIR regulatory 
element improved the sensitivity of glioma 
cells to Temozolomide. [67]. 

In Temozolomide-resistant GBM cells, 
HOTAIR was upregulated, while temozolomide 
resistance was enhanced upon the exosome-
mediated transfer of HOTAIR by a mechanism 
involving miR-519a-3p downregulation 
[68-70]. Poor penetration of the blood-brain 
barrier and failure to achieve a maximal 
intratumoral concentration is a common hurdle 
facing chemotherapy. HOTAIR knockdown 
resulted in improving brain-tumor barrier 
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